• Skip to Content
  • AZ Index
  • Catalog Home
  • Institution Home
  • Apply
  • Request Info
  • Visit
  • Giving
  • Athletics
  • News
  • Events
  • Info for
    • Current Students
    • Faculty & Staff
    • Parents & Family
    • Alumni
    • Community
    • Media
Wheaton College Wheaton College logo
  • About
  • Academics
  • Admissions & Aid
  • Life at Wheaton
filter by
Wheaton College
  • About
  • Academics
  • Admissions & Aid
  • Life at Wheaton
  • Apply
  • Request Info
  • Visit
  • Giving
  • Athletics
  • News
  • Events
  • Current Students
  • Faculty & Staff
  • Parents & Family
  • Alumni
  • Community
  • Media
Catalog 2021-2022

Physics and Engineering

Print
  • Catalog Home/
  • Undergraduate/
  • Arts and Sciences/
  • Physics

Menu

  • Catalog A-​Z Index
  • Wheaton in Profile
  • Undergraduate
    • Undergraduate Student Life
    • Undergraduate Admissions
    • Undergraduate Academic Policies and Information
    • Arts and Sciences
      • Anthropology
      • Applied Health Science
      • Art
      • Biblical and Theological Studies
      • Biological and Health Sciences
      • Business and Economics
      • Chemistry
      • Christian Formation and Ministry
      • Communication
      • Computer Science
      • Core and General Studies
      • Education
      • Engineering Dual Degree
      • English
      • Environmental Science
      • Geology
      • Global Programs and Studies
      • History
      • Human Needs and Global Resources
      • Interdisciplinary Studies
      • International Relations
      • Liberal Arts/​Nursing
      • Mathematics
      • Military Science
      • Modern and Classical Languages
      • Music, Bachelor of Arts
      • Philosophy
      • Physics
        • Physics, Bachelor of Science
        • Physics, Bachelor of Arts
        • Physics with Secondary Education, Bachelor of Science
        • Physics: Applied Physics, Bachelor of Science
        • Physics Minor
        • Engineering, Dual Degree
      • Political Science
      • Pre-​Law Studies Certificate
      • Psychology
      • Science Area Programs
      • Sociology and Anthropology
      • TESOL and Intercultural Studies
      • Urban Studies
    • Conservatory of Music
    • Special Programs
    • Undergraduate Programs
  • Graduate
  • Course Descriptions
  • Financial Information
  • Directory
  • College Calendar
  • Archived Catalogs
  • Catalog Addendum
  • Overview
  • Faculty
  • Programs
  • Courses

Our department serves physics and engineering majors and the general Wheaton student population by providing robust student-centered learning experiences that draw on the unique ways of knowing common to our discipline from a genuinely Christian liberal arts perspective. The study of matter, energy, and their interactions provides fertile ground for enhanced worship of the Creator and for collaborative theoretical, experimental, and computational learning and research among faculty and students in a strong and supportive community. Students grow in their love and worship of God by engaging with His good creation and preparing for lives of service to the church and society.

The department offers several tracks of study leading to a Bachelor of Science or Bachelor of Arts in Physics. A Dual Degree Engineering Program is also available leading to two degrees: a Bachelor of Arts or Science in Liberal Arts Engineering from Wheaton combined with a full Bachelor of Science degree from any other school that offers a fully ABET accredited program in the engineering discipline of interest. Detailed requirements and course offerings for both physics and engineering are summarized below.

On This Page
  • Physics
  • Engineering Dual Degree Program

Physics

The physics curriculum is organized to prepare a student for graduate work in physics or a related discipline as well as a range of other vocations that make use of the analytical and problem solving skills of a physicist.

  • The Bachelor of Science in Physics track incorporates all of the necessary coursework to prepare a student for graduate work in physics.
  • The Bachelor of Arts in Physics overlaps nearly completely with the Bachelor of Science track but allows the student more freedom to select from a set of upper level core courses. The BA degree is not appropriate for those going on to graduate work in physics but provides more flexibility for those who want to double major or study abroad and who plan to go on to professional schools such as law or medicine or go straight into the workplace after graduation.
  • The Bachelor of Science with Secondary Education track prepares students for high school physics teaching.
  • The Bachelor of Science in Applied Physics replaces some of the upper division physics requirements with required engineering coursework and is a good choice for those who plan to pursue engineering or a related field after graduation.

All physics majors are strongly encouraged to complete the PHYS 294 requirement in their first year.

The Departmental Honors Program is available to all physics majors who maintain a 3.70 GPA in the major, and an overall GPA of 3.50. Eight credit hours of designated honors coursework are required, four of which may consist of a modified major course, and four of which must be PHYS 499, resulting in the completion of a research thesis. Successful completion of the program will result in a Departmental Honors designation on the student’s transcript. Students must submit an application to the department at least one year prior to graduation to participate in the honors program. See the department for details.

Engineering Dual Degree Program

A five-year program is offered leading to two degrees, a Bachelor of Arts or Bachelor of Science degree in Liberal Arts Engineering from Wheaton and a Bachelor of Science degree in a specific engineering field from an ABET accredited engineering program at another institution. This arrangement allows students to complete degrees in a wide array of engineering disciplines. The student must meet the requirements of the school to which admission is sought. Special joint programs are in place with Illinois Tech and Northern Illinois University (NIU) but students may transfer to any ABET accredited engineering program at other institutions as well.

Several commonly required lower division engineering courses are offered by engineering faculty at Wheaton to prepare students for successful completion of engineering requirements at the engineering school in the final two years of the dual degree program. (See course information below.) Transfer of the Wheaton College engineering courses to meet requirements at engineering schools is likely but not guaranteed. Each student should verify that any courses taken at Wheaton will transfer successfully for the specific program and institution of interest.

The joint program arrangement with Illinois Tech allows students to take other engineering courses not offered at Wheaton during the first three years of the five year program. An agreement with the nearby College of DuPage (COD) also allows students to take selected engineering coursework there during the first 3 years. Students must complete appropriate paperwork and register at both Wheaton College and either Illinois Tech or COD for the courses taught at these institutions. Illinois Tech courses will usually be taken at the Illinois Tech main campus in Chicago but some courses may be made available on internet upon request.

Approved course tracks for the full five years with Illinois Tech and NIU, as the partner schools, are available from the Department. Illinois Tech programs are available in aerospace, architectural, biomedical, chemical, civil, computer, electrical, and mechanical engineering. NIU programs are available in electrical, industrial and systems, and mechanical engineering.

Students completing their engineering coursework at a school in the vicinity of Wheaton College (e.g. Illinois Tech, Northern Illinois University, or University of Illinois - Chicago) during the last two years of the five year program, by virtue of their continuing in the Wheaton College dual degree program, may remain in Wheaton College housing and may continue to participate fully in extra-curricular activities at the College, including athletics.

See department for course plans, including additional ENGR and other courses that will satisfy requirements at the engineering school of choice. Students in the engineering program have modified Christ at the Core general education requirements. Students are only required to take one 4 hour Foreign Language course, they are not required to complete the Scientific Issues and Perspectives (SIP) theme, and they should choose 4 of the following 5 themes:

  • Diversity in the United States (DUS),
  • Global Perspectives (GP),
  • Historical Perspectives (HP),
  • Literary Explorations (LE),
  • Philosophical Investigations (PI).

The remaining Christ at the Core requirements are the same as for all other majors. Some engineering schools will require additional coursework beyond the Wheaton requirements prior to transfer. Some schools may also require Christ at the Core Thematic courses to be taken from specific departments. Students should consult with their advisor and the engineering school of interest to ensure courses taken at Wheaton will meet requirements at the engineering school. Up to eight hours of non-major courses at the engineering school may be transferred back to Wheaton to meet Wheaton requirements.

In all cases a transcript from the engineering school indicating that all engineering requirements have been met must be received by the Wheaton registrar before the Wheaton Liberal Arts Engineering degree will be conferred. Students who complete all Wheaton College course requirements by the end of their fourth year may participate in the commencement ceremonies of that year.

Chair, Professor Darren Craig
Associate Professors Robert Bishop, Arend Jan Poelarends, Heather Whitney
Assistant Professors David Hsu, James Schroeder

  • Physics, Bachelor of Science
  • Physics, Bachelor of Arts
  • Physics with Secondary Education, Bachelor of Science
  • Physics: Applied Physics, Bachelor of Science
  • Physics Minor
  • Engineering, Dual Degree
Subjects in this Department
  • Physics Courses
  • Astronomy Courses
  • Engineering Courses

Physics Courses

See the Financial Information section of this catalog for course fees.

PHYS 221. General Physics I. (4 Credits)

Newtonian mechanics, energy, waves, and heat. Non-calculus based. Four hours lecture, three hours laboratory. Prerequisite: Pre-calculus (algebra and trigonometry) competence. Not open to students with prior credit for PHYS 231 or 233.

Tags: SP

PHYS 222. General Physics II. (4 Credits)

Electromagnetism, optics, and modern physics. Non-calculus based. Four hours lecture, three hours laboratory. Prerequisite: PHYS 221. Not open to students with prior credit for PHYS 232 or 234.

PHYS 231. Introductory Physics I. (4 Credits)

Kinematics, Newtonian dynamics, conservation laws, and selected topics from oscillations, waves, fluids, and thermodynamics. Four hours lecture, three hours laboratory. Corequisite or Prerequisite: MATH 231.

Tags: SP

PHYS 232. Introductory Physics II. (4 Credits)

Electricity and magnetism, optics, and selected topics from modern physics, waves, and thermodynamics. Four hours lecture, three hours laboratory. Prerequisite: PHYS 231. Pre or Corequisite: MATH 232 or MATH 234.

PHYS 294. Physics for the Future. (2 Credits)

The beginning of an exciting journey into the intricacies of our created world. Includes discussion of recent physics breakthroughs, exposure to research at Wheaton and at nearby national laboratories, discussion of vocational pathways, and thoughts on the relationship of physics to the liberal arts and the Christian faith. (lin)

PHYS 305. Dakota Skies: Astronomy and Atmospheric Science in the Black Hills. (4 Credits)

An introduction to the study of the weather and the universe. Topics include physical foundations for astronomy and atmospheric science, the evolution of stars, the structure and origin of the universe, the structure of the earth's atmosphere, weather systems, weather analysis and forecasting. Special attention will be given to sound scientific practices, including systematic scientific investigations, critical evaluation of scientific claims and the ability to develop a sound scientific argument.

Tags: SP

PHYS 331. Spacetime and Quanta. (4 Credits)

Special Relativity, Quantum Mechanics, and selected topics from Atomic Physics, Statistical Physics, Nuclear Physics, Particle Physics, Solid State Physics, and Cosmology. Four hours lecture. Prerequisites: PHYS 232 and PHYS 334. Co or Prerequisite:MATH 333.

PHYS 334. Computer Modeling of Physical Systems. (2 Credits)

An introduction to computer methods for the analysis, modeling and simulation of physical systems and analysis of experimental data. Applications taken from mechanics, fluids, electricity and magnetism. Prerequisite: PHYS 231 and MATH 231. Pre or Corequisite: MATH 232 or MATH 234.

PHYS 341. Analytical Mechanics. (4 Credits)

Particle and rigid body dynamics, central forces and gravitation, rotating systems and bodies, Lagrange and Hamilton formulations, generalized coordinates, and normal modes. Prerequisites: PHYS 334 and MATH 333. Pre or Co-requisite: MATH 245 and MATH 331.

PHYS 342. Electromagnetic Theory. (4 Credits)

Electrostatics, steady currents, linear materials, electromagnetic induction, Maxwell's equations, and electromagnetic waves. Prerequisites: PHYS 334 and MATH 331. Pre or Corequisite: MATH 333. Alternate years.

PHYS 343. Methods of Experimental Physics. (2 Credits)

Design of scientific investigations; experimental methods and instrumentation; construction of scientific arguments from data. Six hours laboratory. Prerequisites: PHYS 334 and Junior or higher standing. (lin)

PHYS 344. Quantum Mechanics. (4 Credits)

Elements of quantum physics, solutions of Schrödinger's equation applied to atomic and molecular structure, applications, interpretations. Prerequisites: PHYS 331 and 334; and MATH 245, 331 and 333. Alternate years.

PHYS 345. Methods of Data Analysis and Presentation. (2 Credits)

Development of skills in data and error analysis, technical communication, and scientific argument. Prerequisite: PHYS 334 and Writing and Communication Competencies.

PHYS 351. Analog Electronics. (2 Credits)

Basic principles of electronic circuits and devices. AC and DC circuit fundamentals, filters, diodes, transistors, amplifiers, and operational amplifiers. Four hours lecture, three hours laboratory. Prerequisite: PHYS 232. Pre or Corequisite: PHYS 334.

PHYS 352. Computer Data Acquisition. (2 Credits)

Digital electronics, analog to digital conversion, computer interfacing, and data acquisition with LabVIEW software. Four hours lecture, three hours laboratory. Prerequisite: PHYS 351. Alternate years. Course is offered occasionally.

PHYS 354. Advanced Optics. (2 Credits)

Light propagation in matter, polarization, Fourier optics, aberrations, holography, lasers, and modern optical materials and components. Four hours lecture, three hours laboratory. Prerequisite: PHYS 353. Alternate years. Course is offered occasionally.

PHYS 359. Thermodynamics. (4 Credits)

Theory of heat and gases, introduction to kinetic theory and statistical mechanics. Alternate years. Prerequisites: PHYS 232 and PHYS 334.

PHYS 361. Solid State Physics and Nanotechnology. (2 Credits)

Bonding and structure of crystals, electronic properties of insulators, semiconductors, metals, and superconductors, limits of smallness, molecular assembly, and nanoscale physics. Prerequisite: PHYS 344 or CHEM 371. Alternate years. Course is offered occasionally.

PHYS 362. Plasma Physics. (2 Credits)

Introduction to plasma physics including definition of a plasma, single particle and guiding center motions, fluid descriptions, waves, instabilities, and applications of plasma physics in space and astrophysics, controlled thermonuclear fusion, and industry. Pre or Corequisite: PHYS 342. Alternate years. Course is offered occasionally.

PHYS 363. Introduction to Medical Physics. (2 Credits)

A survey of radiation therapy, nuclear medicine, diagnostic imaging, and health physics with discussion on ethical and stewardship concerns of these technologies. Prerequisites: PHYS 222 or PHYS 331. Course is offered occasionally.

PHYS 366. Particle Physics and Cosmology. (2 Credits)

Elementary particles, fundamental interactions, conservation laws and symmetries, big bang cosmology, dark matter and dark energy. Alternate years. Prerequisites: PHYS 331 and 334. Course is offered occasionally.

PHYS 367. Introduction to Stellar and Galactic Astrophysics. (4 Credits)

Introduction to stellar and galactic astrophysics with an emphasis on the underlying physical principles. Course has an integrated lab component (2 hours lecture, 1 hour lab per week) Topics: Structure and evolution of stars, stellar atmospheres and spectra, binary stars and stellar remnants. Galactic dynamics, morphology, and evolution; large-scale structure of the universe. Prerequisites: MATH 333 and PHYS 334. Alternate years. Course is offered occasionally.

PHYS 494. Senior Seminar. (2 Credits)

Study of the wider cultural significance of physics including its historical development; its relationship to other disciplines; its philosophical interpretations; its place in a Christian worldview; and one's stewardship toward society. Independent study and classroom presentation. Prerequisite: senior standing in the major. (lin)

General Education: SHAR

PHYS 495. Independent Study. (1 to 4 Credits)

Independent research.

PHYS 496. Internship. (1 to 4 Credits)

Supervised off-campus experience with departmental approval. Graded pass/fail. Prerequisite: junior or senior standing with Physics major.

PHYS 499. Honors Thesis. (2 to 4 Credits)

An independent project providing original physics research developed in a scholarly paper and culminating in an oral examination. Partially fulfills requirements for an honors degree in physics. Additional requirements are available in the Physics Office.

Astronomy Courses

ASTR 304. Global History of Cosmology. (4 Credits)

Study of the historical development of cosmology in ancient Egypt, Mesopotamia, India, Greece, Asia, and the Americas through contemporary developments. Cultural and religious interactions with developments in cosmology are emphasized.

Tags: GP, SIP

ASTR 305. Astronomy. (4 Credits)

An introduction to the study of the universe. Topics include the solar system, the formation and evolution of stars and the structure, evolution and origin of the universe. Special attention will be given to the social, historical, philosophical and theological context of astronomical discoveries and controversies.

Tags: SIP

Engineering Courses

ENGR 101. Introduction to the Engineering Profession. (1 Credit)

Introduces students to the engineering profession. The engineering disciplines, problem solving approaches, design processes, professional practices, licensure, engineering ethics, and teamwork will be explored through discussion, reading, research, and guest visits by practicing engineers. The importance of the liberal arts and the impact of faith on the practice of engineering will be explored. Freshmen and sophomores only.

ENGR 105. Fundamentals of Engineering Graphics. (2 Credits)

Introduces students to engineering graphics, the means by which engineers communicate design and fabrication information. Topics cover: utilization of engineering graphics; information on graphics; use of the basic graphic tools; orthographic views in both third and first angle projections; auxiliary, section, isometric, and perspective views. This course acquaints students with the processes that are automated within Computer Aided Drafting and Design (CADD) software and expectations for CADD work product. Lab fee. (lin)

ENGR 125. Introduction to AutoCAD. (2 Credits)

Intro to AutoCAD with emphasis on the fundamentals of Computer-Aided Drafting and Design (CADD). Introduces concepts, techniques and procedures necessary to facilitate a basic functional understanding of AutoCAD and the process of using AutoCAD tools to create, dimension, and annotate basic engineering drawings. Lab fee. (lin)

ENGR 201. Engineering Mechanics 1 - Statics. (4 Credits)

Systems of units; gravitation; Newton's laws of motion; equilibrium and free-body diagrams; particles, forces and moments; structures in equilibrium; centroids and center of mass; moments of inertia; friction; beam loadings; cables; fluids; virtual work and potential energy. Prerequisite: PHYS 231. Pre or Corequisite: PHYS 334.

ENGR 202. Engineering Mechanics 11 – Dynamics. (4 Credits)

Topics include: kinematics and kinetics of particles; Newton's laws of motion; energy, momentum, systems of particles; rigid bodies; free-body diagrams; mass, acceleration, and force; plane motion of rigid bodies; and, conservation of energy and momentum. Prerequisite: ENGR 201. Pre or Corequisite: MATH 333.

ENGR 204. Innovative Design in Engineering. (4 Credits)

Provides the student engineer with firsthand experience in moving from a stated need to a developed and proof-tested product. Topics include project logbooks and plans, evaluating concepts and selecting a design, preparing design documents, fabrication, development and testing of prototypes, stewardship of the environment, preparation of engineering reports, and principles of contract, engineering, and patent law. Prerequisites: ENGR 201.

ENGR 223. Strength of Materials. (4 Credits)

Provides a broad range of knowledge of the behavior of materials under load. Topics include: mechanical properties; plane stress and strain; stress and strain relations; axially loaded members; Mohr's circle; stress transformation; torsion of shafts; bending and normal and shear stresses in beams; beam deflection; and combined loading. Prerequisite: ENGR 201.

ENGR 225. Materials Science. (4 Credits)

Presents the scientific principles underlying the structural analysis of ceramic, composite, metallic (including semiconductors), and polymeric materials. Topics include atomic bonding and structure, electronic structure, micro- and macrostructure. Principles of structural effects on the chemical, mechanical, and physical properties of material are also addressed. Prerequisites: ENGR 201 and CHEM 231.

ENGR 394. Engineering Ethics Capstone. (2 Credits)

Engineering ethics and vocation; connections between the liberal arts educational experience and the practice of engineering. Prerequisite: Junior standing in the major. Seminar format meeting once per week for the full semester. (lin)

General Education: SHAR

ENGR 396. Internship. (1 to 4 Credits)

Supervised off-campus experience with departmental approval. Graded pass/fail. Prerequisite: junior or senior standing with Liberal Arts Engineering major.

Wheaton College

For Christ and his Kingdom

Contact

501 College Avenue
Wheaton, IL 60187-5501
630.752.5000
Contact Us

Maps and Directions

  • Campus Map
  • Directions
  • About the Area
  • Video Campus Tour

Employment

  • Human Resources

Social Media

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Merit Pages

© 2021-2022 Wheaton College

  • Disclosures and Privacy Policy
  • Emergency Information
  • IBHE
Back to Top

Print Options

Send Page to Printer

Print this page.

Download Page (PDF)

The PDF will include all information unique to this page.

Download the catalog PDF

The PDF will include the entire 2021-2022 catalog.

Cancel